Maximum a posteriori linear regression (MAPLR) variance adaptation for continuous density HMMS
نویسندگان
چکیده
In this paper, the theoretical framework of maximum a posteriori linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the proposed prior distribution in MAPLR based variance adaptation are characterized and compared with conventional maximum likelihood linear regression (MLLR) based variance adaptation. These findings provide a consistent Bayesian theoretical framework to incorporate prior knowledge in linear regression based variance adaptation. Experiments on large vocabulary speech recognition tasks were performed. The experimental results indicate that significant performance gain over the MLLR based variance adaptation can be obtained based on the proposed approach.
منابع مشابه
Maximum a Posteriori Linear Reg Adaptation for Continuo
In this paper, the theoretical framework of maximum a posteriori linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propo...
متن کاملMaximum a Posterior Linear Regression Based Variance Adaptation of Continuous Density Hmms
In this paper, the theoretical framework of maximum a posterior linear regression (MAPLR) based variance adaptation for continuous density HMMs is described. In our approach, a class of informative prior distribution for MAPLR based variance adaptation is identified, from which the close form solution of MAPLR based variance adaptation is obtained under its EM formulation. Effects of the propos...
متن کاملQuasi-Bayes linear regression for sequential learning of hidden Markov models
This paper presents an online/sequential linear regression adaptation framework for hidden Markov model (HMM) based speech recognition. Our attempt is to sequentially improve speaker-independent speech recognition system to handle the nonstationary environments via the linear regression adaptation of HMMs. A quasi-Bayes linear regression (QBLR) algorithm is developed to execute the sequential a...
متن کاملJoint Bilinear Transformation Space Based Maximum a posteriori Linear Regression Adaptation Using Prior with Variance Function
This paper proposes a new joint maximum a posteriori linear regression (MAPLR) adaptation using single prior distribution with a variance function in bilinear transformation space (BITS). There are two indirect adaptation methods based on the linear transformation in BITS and these are tightly coupled by joint MAP-based estimation. The proposed method not only has the scalable parameters but al...
متن کاملLinear regression based Bayesian predictive classification for speech recognition
The uncertainty in parameter estimation due to the adverse environments deteriorates the classification performance for speech recognition. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. In this paper, we propose a novel linear regression based Bayesian predictive classification (LRBPC) for robust speech recognitio...
متن کامل